LECTURE 20

ZIQUAN YANG

Today we introduce the last topic of the course, the divergence theorem.

Theorem 1. Suppose that **F** is a continuously differentiable vector field defined on an open part of \mathbb{R}^3 which contains an oriented closed smooth surface $\partial \Omega$ enclosing a solid region Ω . Let **n** be the outward pointing unit normal vector field. Then we have

(1)
$$\iint_{\partial\Omega} \mathbf{F} \cdot \mathbf{n} d\sigma = \iiint_{\Omega} \nabla \cdot \mathbf{F} dV$$

Proof. Suppose that $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$. Then we have

(2)
$$\iint_{\partial\Omega} \mathbf{F} \cdot \mathbf{n} d\sigma = \iint_{\partial\Omega} (M\mathbf{i} + N\mathbf{j} + P\mathbf{k}) \cdot \mathbf{n} d\sigma = \iint_{\partial\Omega} M\mathbf{i} \cdot \mathbf{n} d\sigma + \iint_{\partial\Omega} N\mathbf{j} \cdot \mathbf{n} d\sigma + \iint_{\partial\Omega} P\mathbf{k} \cdot \mathbf{n} d\sigma.$$

A similar equation holds for the right hand side of (1). Therefore, to prove the theorem it suffices to prove it for the components $M\mathbf{i}, N\mathbf{j}$ and $P\mathbf{k}$ individually. Therefore, we might as well assume that $\mathbf{F} = P\mathbf{k}$.

Let us say Ω is of type-z if it is of the form

$$\{(x,y,z)\in\mathbb{R}^3:(x,y)\in D, f(x,y)\leq z\leq g(x,y)\}$$

for some region *D* on the *xy*-plane and functions *f* and *g*. For any ε , we can find finitely many regions $\Omega_1, \dots, \Omega_n$ in Ω of type-z such that both sides of (1) differ by at most ε if we replace Ω by the union of $\Omega_1, \dots, \Omega_n$. Therefore, it suffices to assume that Ω is of type-z.

We only need to consider the cap and bottom of the region. The double integral on the cap becomes

$$\iint_D P(x, y, g(x, y)) \mathbf{k} \cdot (-g_x \mathbf{i} - g_y \mathbf{j} + \mathbf{k}) dx dy = \iint_D P(x, y, g(x, y)) dx dy.$$

Therefore, the left hand side of (1) becomes

$$\iint_D P(x, y, g(x, y)) - P(x, y, f(x, y)) \, dx \, dy.$$

The right hand side of (1) becomes

$$\iiint_{\Omega} \frac{\partial P}{\partial z} dz dx dy = \iint_{D} \int_{f(x,y)}^{g(x,y)} \frac{\partial P}{\partial z} dz dx dy,$$

so we are done by the fundamental theorem of calculus.

Example 2. Consider the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and the sphere *S* defined by $x^2 + y^2 + z^2 = a^2$ enclosing a solid ball Ω of radius *a*. Let us check divergence theorem in this case.

The outward unit normal vector **n** on the sphere is:

$$\mathbf{n} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a}.$$

The dot product $\mathbf{F} \cdot \mathbf{n}$ is:

$$\mathbf{F} \cdot \mathbf{n} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot \left(\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a}\right) = \frac{x^2 + y^2 + z^2}{a} = \frac{a^2}{a} = a$$

The surface integral becomes:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\boldsymbol{\sigma} = \iint_{S} a \, d\boldsymbol{\sigma} = a \cdot \operatorname{Area}(S) = 4\pi a^{3}.$$

Date: April 16, 2025.

The divergence of **F** is

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 1 + 1 + 1 = 3.$$

The volume integral is:

$$\iiint_{\Omega} \nabla \cdot \mathbf{F} \, dV = \iiint_{\Omega} 3 \, dV = 3 \times (\text{Volume of } \Omega) = 3 \times \frac{4}{3} \pi a^3 = 4\pi a^3.$$

Example 3. Find the flux of the vector field $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ outward through the surface of the cube bounded by the planes x = 1, y = 1, and z = 1 in the first octant.

Compute the divergence of **F**:

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(xy) + \frac{\partial}{\partial y}(yz) + \frac{\partial}{\partial z}(xz) = y + z + x$$

By the Divergence Theorem:

Total flux =
$$\iiint_{\text{Cube}} (x+y+z) \, dV = \int_0^1 \int_0^1 \int_0^1 (x+y+z) \, dx \, dy \, dz = \frac{3}{2}$$